

BAC

www.BaltimoreAircoil.eu	DFCV-AD cooler	SP cooler	DFCV cooler	DFCH cooler	DCV-AD condenser
Principle of operation					
Capacity	220-1620 kW	340-1560 kW	220-1500 KW	120-800 kW	340-1030 kW
Configuration	counterflow	counterflow	counterflow	counterflow	counterflow
Air entry	axial fan induced draft	axial fan induced draft	axial fan induced draft	axial fan induces draft	axial fan induced draft
Maximum entering fluid temperature	60°C	60°C	60°C	65°C High temperature execution available (max. 150°C, max. 10 bar pressure)	/
Low sound			■●●●		
Energy efficiency	(*) c	(š) c	(5) D	(*) D	(*) c
Easy maintenance					
Operational safety (hygiene)					
Water saving	В	В			В

Dry and adiabatic cooling products

Dry and adiabatic cooling products

Dry or air cooled products

Dry or air-cooled products cool liquids or condensate gases in closed circuits via sensible heat transfer from high-density finned coil to air at ambient dry bulb temperature.

Key benefits

- Eliminates water treatment and reduces water usage
- Eliminates plumes
- Reduced maintenance
- Eliminates Legionella risks

Why go for evaporative rather than dry cooling?

- When you need a fluid outlet temperature close to the design ambient dry bulb temperature
- To save on energy costs
- If the cooling unit plan area is compact or restricted

Adiabatic products

Adiabatic products are air-cooled coolers or condensers with adiabatic **pre-coolers**. Before the fan draws the ambient air through the finned coil, the air is pre-cooled adiabatically when traversing an **humidification pad**. This evaporates the water in the air, thus boosting the cooling capacity.

Key benefits

- low process temperatures
- saves more than 80% on annual water compared to cooling towers
- up to 40% increased capacity compared to dry cooling (air temperatures approaching wet bulb temperature)
- reduced energy consumption
- operational safety: no water recirculation, no stagnant water, no aerosol generation, no water carry-over.

