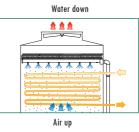


www.BaltimoreAircoil.eu	CXVE	CXV-D	НХС	PCE	VCL	vxc	DCV-AD
Principle of operation							
Capacity	440-2765 kW	2750-4025 kW	545-1895 kW	540-2710 kW	180-1380 kW	60-6920 kW	340-1030 kW
Configuration	combined flow	combined flow	combined flow	counterflow	counterflow	counterflow	counterflow
Air entry	axial fan induced draft	axial fan induced draft	axial fan induced draft	axial fan induced draft	centrigufal fan forced draft	centrigufal fan forced draft	axial fan induced draft
Low sound	u())) c	₩) c	■()) c	I())) F		()) A	I) D
Energy efficiency	(3) A	(5) A	(5) A	(3) A	(5) F	F	(🔅) c
Easy maintenance	X A		≫ в	X •	× •		X A
Operational safety (hygiene)			В	D	¢ è E	E	
Water saving	🧈 E	E	c c	D	D	D	B
Refrigerant condense							

Refrigerant condensers

Refrigerant condensers


Principle of operation

Evaporative condensers discharge refrigerant and air-conditioning heat, and consume minimal energy and water. They combine a cooling tower and a refrigerant condenser in a single unit. A small portion of the water is evaporated, removing the heat from the refrigerant and condensing it inside the coil. This saves up to 95% of the water compared with a once-through condensing system.

Benefits

- Initial cost savings: cooling tower, condenser surface, water pump and piping in a single equipment unit
- Low system operating costs: low condensing temperatures for a more compact compressor using less power
- Low refrigerant charge, costs and environmental impact minimized
- Space-saving: up to 50 % area savings compared to comparable air-cooled installations.

Configurations

Pressurized spray system

Fan systems

BAC

Centrifugal fan

Counterflow configuration

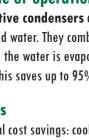
- can overcome external static pressure, suitable for indoor installations
- inherently quiet

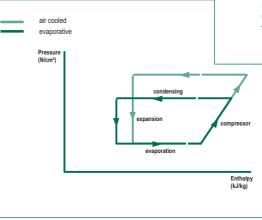
Axial fan

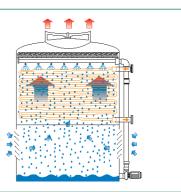
low energy usage

Forced draft

- rotating air handling components are located on the air inlet face at the base of the tower
- easy access for maintenance
- located in dry entering air stream


Air in and water down


...


Air across

Induced draft

- rotating air handling components are mounted in the top deck of the unit
- minimal impact of fan noise
- maximum protection from fan icing
- located in the corrosive saturated discharge air stream

Combined flow configuration

Parallel flow of air and water over the coil, crossflow

configuration of the fill

BAC PATENTED

DESIGN